# Applications of Generalized Universal Valuations

William Bernardoni

September 19, 2023

Paper under the same name is available on arXiv: [2]

**Statement of Acknowledgement:** This presentation was made possible, in part, through financial support from the School of Graduate Studies at Case Western Reserve University.

• I work with non-commutative, non-totally ordered idempotent semirings which occur naturally in computation [1] and in the mathematical foundations of satellite networking [3].

- I work with non-commutative, non-totally ordered idempotent semirings which occur naturally in computation [1] and in the mathematical foundations of satellite networking [3].
- The connection between the algebraic geometry of valuated rings and tropical geometry has created many tools to study both algebraic geometry [6] and tropical geometry [5]

- I work with non-commutative, non-totally ordered idempotent semirings which occur naturally in computation [1] and in the mathematical foundations of satellite networking [3].
- The connection between the algebraic geometry of valuated rings and tropical geometry has created many tools to study both algebraic geometry [6] and tropical geometry [5]
- The Giansiaracusas generalized this link to commutative, non-totally ordered idempotent semirings [4]

- I work with non-commutative, non-totally ordered idempotent semirings which occur naturally in computation [1] and in the mathematical foundations of satellite networking [3].
- The connection between the algebraic geometry of valuated rings and tropical geometry has created many tools to study both algebraic geometry [6] and tropical geometry [5]
- The Giansiaracusas generalized this link to commutative, non-totally ordered idempotent semirings [4]
- We seek to generalize this even further, to establish a geometry of non-commutative idempotent semirings.

### Objects of Study

- Semirings
- Generalized Valuations

### 2 Universal Valuations

- Category of Valuations
- Γ<sub>R</sub>
- A Non-Commutative Example
- Structure Theorem

### 3 Applications

- Non-Archimedean Case of Ostrowski's Theorem
- Representations in Ultrametric Spaces

### 4 References

Semirings

Applications

Generalized Valuations

# Objects of Study

| Objects of Study | Universal Valuations | Applications | References             |
|------------------|----------------------|--------------|------------------------|
| Semirings        |                      |              | Generalized Valuations |
| Semirings        |                      |              |                        |

A semiring is a set S with a unital  $(0_S)$  commutative addition  $+_S$  and a potentially non-commutative, unital  $(1_S)$  multiplication  $*_S$  which distributes over the addition.

| Objects of Study | Universal Valuations | Applications | References             |
|------------------|----------------------|--------------|------------------------|
| Semirings        |                      |              | Generalized Valuations |
| Semirings        |                      |              |                        |

A semiring S is **idempotent** if for all  $a \in S$ :

a + a = a

| Objects of Study | Universal Valuations | Applications | References             |
|------------------|----------------------|--------------|------------------------|
| Semirings        |                      |              | Generalized Valuations |
| Semirings        |                      |              |                        |

A semiring S is **idempotent** if for all  $a \in S$ :

a + a = a

Idempotent semirings have a natural partial order:

$$a \leq b \iff a+b=a$$

| Objects of Study | Universal Valuations | Applications | References             |
|------------------|----------------------|--------------|------------------------|
| Semirings        |                      |              | Generalized Valuations |
| Semirings        |                      |              |                        |

A semiring S is **idempotent** if for all  $a \in S$ :

a + a = a

Idempotent semirings have a natural partial order:

$$a \leq b \iff a+b=a$$

With respect to this partial order we have:

$$\inf(X) = \sum_{x \in X} x$$

| Objects of Study  | Universal Valuations | Applications | References             |
|-------------------|----------------------|--------------|------------------------|
| Semirings         |                      |              | Generalized Valuations |
| Generalized Valua | ations               |              |                        |

From the Giansiracusa's work on tropical schemes[4], we can generalize the notion of a valuation to be over an arbitrary idempotent semiring

#### Definition

Let R be a ring and  $\Gamma$  an idempotent semiring. We say that a function  $\nu : R \to \Gamma$  is a valuation if  $\nu$  is:

Unital: 
$$u(0_R) = 0_{\Gamma}, \ \nu(1_R) = 1_{\Gamma} = \nu(-1_R),$$

Multiplicative:  $\nu(a *_R b) = \nu(a) *_{\Gamma} \nu(b)$ ,

Superadditive:  $\nu(a +_R b) \ge \nu(a) +_{\Gamma} \nu(b) = \inf_{\Gamma} (\nu(a), \nu(b)).$ 

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| Category of Valuations |                      |                           |                   |

Rings with valuation,  $(R, \Gamma, R \xrightarrow{\nu} \Gamma)$  form a category, with morphisms being appropriate homomorphisms such that the diagram commutes:





If we look at the subcategory where we fix an R:

 $\begin{array}{ccc} R & \stackrel{id}{\longrightarrow} & R \\ \nu & & \downarrow \nu' \\ \Gamma & \longrightarrow & \Gamma' \end{array}$ 

We have a theorem by the Giansiracusas[4]:

#### Theorem

For a ring R there is a universal valuation  $R \to \Gamma_R$  which is initial in the above category.



If we look at the subcategory where we fix an R:

 $\begin{array}{ccc} R & \stackrel{id}{\longrightarrow} & R \\ \nu & & \downarrow \nu' \\ \Gamma & \longrightarrow & \Gamma' \end{array}$ 

We have a theorem by the Giansiracusas[4]:

#### Theorem

For a ring R there is a universal valuation  $R \to \Gamma_R$  which is initial in the above category.

The Giansiracusas worked over valuations into commutative semirings but this statement holds even when we allow the semirings to be noncommutative.

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| Universal Valuations   |                      |                           |                   |

We call the "non-commutative polynomial semiring"

 $\mathbb{B}\left\langle X
ight
angle$ 

It is the  $\mathbb{B}$  span over the free monoid on X.

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| Universal Valuations   |                      |                           |                   |

We call the "non-commutative polynomial semiring"

 $\mathbb{B}\left\langle X
ight
angle$ 

It is the  $\mathbb{B}$  span over the free monoid on X.

In  $\mathbb{B}\langle X \rangle$  we have

$$xy \neq yx$$

however in  $\mathbb{B}[x]$  we do have

xy = yx

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| Universal Valuations   |                      |                           |                   |

$$\Gamma_R = \mathbb{B} \left< R \right> / \sim$$

Where  $\sim$  is the congruence generated by the relations

$$egin{aligned} & x_0 \sim 0 & x_1 \sim 1 & x_{-1} \sim 1 \ & x_a x_b \sim x_{ab} \ & x_{a+b} + x_a + x_b \sim x_a + x_b \ & 
u(a) = [x_a] \end{aligned}$$

This is almost identical to the construction in [4], except we quotient  $\mathbb{B}\langle R \rangle$  rather than  $\mathbb{B}[R]$ 

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| A Non-Commutati        | ve Valuation         |                           |                   |

What would a non-commutative valuation even look like?

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| A Non-Commuta          | tive Valuation       |                           |                   |

Let *R* be the ring of upper triangular  $2 \times 2$  matrices over  $\mathbb{F}_2$ . *R* has eight elements and they are generated by the matrices:

$$i = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
  $j = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$   $k = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 

| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| A Non-Commutat         | tive Valuation       |                           |                   |

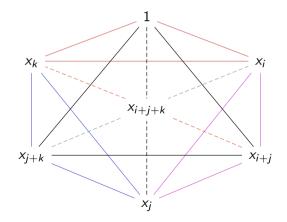
Let *R* be the ring of upper triangular  $2 \times 2$  matrices over  $\mathbb{F}_2$ . *R* has eight elements and they are generated by the matrices:

$$i = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
  $j = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$   $k = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 

 $\Gamma_R$  consists of  $\mathbb{B}$  linear combinations of the elements:  $0, 1, x_i, x_j, x_k, x_{i+j}, x_{j+k}, x_{i+j+k}$ , with multiplication table given by the multiplication table in R

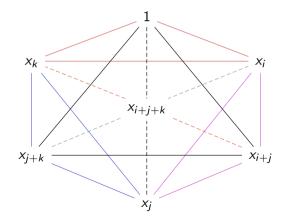
| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| A Non-Commutat         | ive Valuation        |                           |                   |

 $\Gamma_R$ 's additive structure can be given diagrammatically:



| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| A Non-Commutat         | tive Valuation       |                           |                   |

### This is the Fano plane!



| Objects of Study       | Universal Valuations | Applications              | References        |
|------------------------|----------------------|---------------------------|-------------------|
| Category of Valuations | Γ <sub>R</sub>       | A Non-Commutative Example | Structure Theorem |
| Structure Theorem      |                      |                           |                   |

We can give an explicit description of the additive structure of  $\Gamma_R[2]$ 

### Theorem (Structure Theorem for $\Gamma_R$ )

Let  $(a_i)_{i \in I}$  and  $(b_j)_{j \in J}$  be finite collections of elements in a ring R. In  $\Gamma_R$  we have:

$$\left[\sum_{i\in I} x_{a_i}\right] = \left[\sum_{j\in J} x_{b_j}\right]$$

if and only if  $\operatorname{Span}_{\mathbb{Z}}(\{a_i\}_{i\in I}) = \operatorname{Span}_{\mathbb{Z}}(\{b_j\}_{j\in J})$ .

Equivalence classes in  $\Gamma_R$  are given by the  $\mathbb{Z}$  spans of elements

Applications

Representations in Ultrametric Spaces

Non-Archimedean Case of Ostrowski's Theorem

# Applications

Applications

Non-Archimedean Case of Ostrowski's Theorem

Representations in Ultrametric Spaces

## Non-Archimedean Case of Ostrowski's Theorem

#### Corollary

 $\Gamma_{\mathbb{Q}} \cong (\mathbb{Z}^{\omega} \cup \{\infty\}, \min, +, \infty, 0)$  Where  $\nu(a)$  is the exponents in its prime decomposition if a is nonzero, or  $\infty$  otherwise.

Applications

Non-Archimedean Case of Ostrowski's Theorem

Representations in Ultrametric Spaces

### Non-Archimedean Case of Ostrowski's Theorem

#### Corollary

 $\Gamma_{\mathbb{Q}} \cong (\mathbb{Z}^{\omega} \cup \{\infty\}, \min, +, \infty, 0)$  Where  $\nu(a)$  is the exponents in its prime decomposition if a is nonzero, or  $\infty$  otherwise.

#### Theorem

The Non-Archimedean absolute values on R are in correspondence with:

 $Hom(\Gamma_R, \mathbb{T})$ 

Where  $\mathbb T$  is the tropical semiring

Applications

Non-Archimedean Case of Ostrowski's Theorem

Representations in Ultrametric Spaces

# Non-Archimedean Case of Ostrowski's Theorem

### Corollary

 $\Gamma_{\mathbb{Q}} \cong (\mathbb{Z}^{\omega} \cup \{\infty\}, \min, +, \infty, 0)$  Where  $\nu(a)$  is the exponents in its prime decomposition if a is nonzero, or  $\infty$  otherwise.

#### Theorem

The Non-Archimedean absolute values on R are in correspondence with:

 $Hom(\Gamma_R, \mathbb{T})$ 

Where  $\mathbb{T}$  is the tropical semiring

Corollary (Non-Archimedean Case of Ostrowski's Theorem)

The Non-Archimedean absolute values on  $\mathbb{Q}$  up to equivalence are the p-adic ones.

Applications

Representations in Ultrametric Spaces

Non-Archimedean Case of Ostrowski's Theorem

# Representations in Ultrametric Spaces

### Definition

Let *R* be a ring and  $\Gamma$  an idempotent semiring. We say a map  $\nu : R \to \Gamma$  is a **super-multiplicative valuation** if  $\nu$  is:

Unital: 
$$\nu(0_R) = 0_{\Gamma}, \ \nu(1_R) = 1_{\Gamma} = \nu(-1_R)$$

**Supermultiplicative**:  $\nu(a *_R b) \ge \nu(a) *_{\Gamma} \nu(b)$ 

Superadditive:  $\nu(a +_R b) \ge \nu(a) +_{\Gamma} \nu(b) = \inf_{\Gamma} (\nu(a), \nu(b))$ 

Applications

Non-Archimedean Case of Ostrowski's Theorem

Representations in Ultrametric Spaces

### Representations in Ultrametric Spaces

We can form a similar initial super-multiplicative valuation semiring  $\widehat{\Gamma}_R$ , and we can show that our structure theorem holds:

#### Theorem

Let  $(a_i)_{i \in I}$  and  $(b_j)_{j \in J}$  be finite collections of elements in a ring R. In  $\widehat{\Gamma}_R$  we have:

$$\sum_{i\in I} x_{a_i} \right] = \left[ \sum_{j\in J} x_{b_j} \right]$$

If and only if  $\operatorname{Span}_{\mathbb{Z}}(a_i) = \operatorname{Span}_{\mathbb{Z}}(b_j)$ 

Applications

Representations in Ultrametric Spaces

Non-Archimedean Case of Ostrowski's Theorem

# Representations in Ultrametric Spaces

#### Theorem

Let V be an n-dimensional ultrametric space and let  $\phi : R \to End(V)$  be a representation.

 $\phi$  induces a super-multiplicative valuation:  $R \to M_n(\mathbb{T})$ 

Applications

Non-Archimedean Case of Ostrowski's Theorem

Representations in Ultrametric Spaces

## Representations in Ultrametric Spaces

#### Theorem

Let V be an n-dimensional ultrametric space and let  $\phi : R \to End(V)$  be a representation.

 $\phi$  induces a super-multiplicative valuation:  $R \to M_n(\mathbb{T})$ 

### Corollary

If R has a nontrivial n dimensional representation then there is a nontrivial map in:

 $\operatorname{Hom}(\widehat{\Gamma}_R, M_n(\mathbb{T}))$ 

Applications

#### Non-Archimedean Case of Ostrowski's Theorem

## Thank you for attending!

In summary:

- We can generalize the notion of a valuation to non-commutative settings.
- We can form an initial object which can be used to classify different structures (non-archimedean absolute values, ultrametric representations, and more)
- We can explicitly describe the additive structure of this object.

| Objects of Study                           | Universal Valuations | Applications | References                 |
|--------------------------------------------|----------------------|--------------|----------------------------|
| Non-Archimedean Case of Ostrowski's Theore | em                   | Representat  | ions in Ultrametric Spaces |
| Thank you for attendin                     | gļ                   |              |                            |

### Questions?

# References

### References I

- [1] John S. Baras and George Theodorakopoulos. "Path Problems in Networks". In: *Synthesis Lectures on Communication Networks* 3 (2010).
- [2] William Bernardoni. Applications of Generalized Universal Valuations. 2023. arXiv: 2305.08697 [math.RA].
- [3] William Bernardoni et al. Algebraic and Geometric Models for Space Networking. 2023. arXiv: 2304.01150 [math.AT].
- [4] Jeffrey Giansiracusa and Noah Giansiracusa. "Equations of tropical varieties". In: Duke Mathematical Journal 165.18 (Dec. 2016). ISSN: 0012-7094. DOI: 10.1215/00127094-3645544. URL: http://dx.doi.org/10.1215/00127094-3645544.

# References II

- [5] I. Itenberg et al. Tropical Algebraic Geometry. Oberwolfach Seminars Series. Birkhäuser, 2007. ISBN: 9783764383091. URL: https://books.google.com/books?id=3woo9ZTJvA0C.
- [6] Oleg Viro. Patchworking real algebraic varieties. 2006. arXiv: math/0611382 [math.AG].