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Overall Motivation

I work with non-commutative, non-totally ordered idempotent semirings which
occur naturally in computation [1] and in the mathematical foundations of satellite
networking [3].
The connection between the algebraic geometry of valuated rings and tropical
geometry has created many tools to study both algebraic geometry [6] and tropical
geometry [5]
The Giansiaracusas generalized this link to commutative, non-totally ordered
idempotent semirings [4]
We seek to generalize this even further, to establish a geometry of
non-commutative idempotent semirings.
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Semirings Generalized Valuations

Semirings

Definition

A semiring is a set S with a unital (0S) commutative addition +S and a potentially
non-commutative, unital (1S) multiplication ∗S which distributes over the addition.
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Semirings Generalized Valuations

Semirings

Definition

A semiring S is idempotent if for all a ∈ S :

a+ a = a

Idempotent semirings have a natural partial order:

a ≤ b ⇐⇒ a+ b = a

With respect to this partial order we have:

inf(X ) =
∑
x∈X

x
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Semirings Generalized Valuations

Generalized Valuations

From the Giansiracusa’s work on tropical schemes[4], we can generalize the notion of a
valuation to be over an arbitrary idempotent semiring

Definition

Let R be a ring and Γ an idempotent semiring. We say that a function ν : R → Γ is a
valuation if ν is:

Unital: ν(0R) = 0Γ, ν(1R) = 1Γ = ν(−1R),
Multiplicative: ν(a ∗R b) = ν(a) ∗Γ ν(b),
Superadditive: ν(a+R b) ≥ ν(a) +Γ ν(b) = infΓ(ν(a), ν(b)).
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

Category of Valuations

Rings with valuation, (R, Γ,R ν−→ Γ) form a category, with morphisms being
appropriate homomorphisms such that the diagram commutes:

R R ′

Γ Γ′

ν ν′
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

Category of Valuations

If we look at the subcategory where we fix an R :

R R

Γ Γ′

ν ν′

id

We have a theorem by the Giansiracusas[4]:

Theorem
For a ring R there is a universal valuation R → ΓR which is initial in the above category.
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

Category of Valuations

If we look at the subcategory where we fix an R :

R R

Γ Γ′

ν ν′

id

We have a theorem by the Giansiracusas[4]:

Theorem
For a ring R there is a universal valuation R → ΓR which is initial in the above category.

The Giansiracusas worked over valuations into commutative semirings but this
statement holds even when we allow the semirings to be noncommutative.
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Universal Valuations

Definition
We call the “non-commutative polynomial semiring"

B ⟨X ⟩

It is the B span over the free monoid on X .
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

Universal Valuations

Definition
We call the “non-commutative polynomial semiring"

B ⟨X ⟩

It is the B span over the free monoid on X .

In B ⟨X ⟩ we have
xy ̸= yx

however in B[x ] we do have
xy = yx
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

Universal Valuations

Definition

ΓR = B ⟨R⟩ / ∼

Where ∼ is the congruence generated by the relations

x0 ∼ 0 x1 ∼ 1 x−1 ∼ 1
xaxb ∼ xab

xa+b + xa + xb ∼ xa + xb

ν(a) = [xa]

This is almost identical to the construction in [4], except we quotient B ⟨R⟩ rather than
B[R]
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

A Non-Commutative Valuation

What would a non-commutative valuation even look like?
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

A Non-Commutative Valuation

Let R be the ring of upper triangular 2 × 2 matrices over F2. R has eight elements and
they are generated by the matrices:

i =

[
1 0
0 0

]
j =

[
0 1
0 0

]
k =

[
0 0
0 1

]
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

A Non-Commutative Valuation

Let R be the ring of upper triangular 2 × 2 matrices over F2. R has eight elements and
they are generated by the matrices:

i =

[
1 0
0 0

]
j =

[
0 1
0 0

]
k =

[
0 0
0 1

]
ΓR consists of B linear combinations of the elements: 0, 1, xi , xj , xk , xi+j , xj+k , xi+j+k ,
with multiplication table given by the multiplication table in R
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

A Non-Commutative Valuation

ΓR ’s additive structure can be given diagrammatically:

1

xk xi

xi+j+k

xj+k xi+j

xj
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

A Non-Commutative Valuation

This is the Fano plane!

1

xk xi

xi+j+k

xj+k xi+j

xj
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Category of Valuations ΓR A Non-Commutative Example Structure Theorem

Structure Theorem

We can give an explicit description of the additive structure of ΓR [2]

Theorem (Structure Theorem for ΓR)

Let (ai )i∈I and (bj)j∈J be finite collections of elements in a ring R . In ΓR we have:[∑
i∈I

xai

]
=

∑
j∈J

xbj


if and only if SpanZ({ai}i∈I ) = SpanZ({bj}j∈J).

Equivalence classes in ΓR are given by the Z spans of elements
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Non-Archimedean Case of Ostrowski’s Theorem

Corollary

ΓQ ∼= (Zω ∪ {∞},min,+,∞, 0) Where ν(a) is the exponents in its prime
decomposition if a is nonzero, or ∞ otherwise.
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Theorem
The Non-Archimedean absolute values on R are in correspondence with:

Hom(ΓR ,T)

Where T is the tropical semiring
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Non-Archimedean Case of Ostrowski’s Theorem

Corollary

ΓQ ∼= (Zω ∪ {∞},min,+,∞, 0) Where ν(a) is the exponents in its prime
decomposition if a is nonzero, or ∞ otherwise.

Theorem
The Non-Archimedean absolute values on R are in correspondence with:

Hom(ΓR ,T)

Where T is the tropical semiring

Corollary (Non-Archimedean Case of Ostrowski’s Theorem)

The Non-Archimedean absolute values on Q up to equivalence are the p-adic ones.
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Representations in Ultrametric Spaces

Definition
Let R be a ring and Γ an idempotent semiring. We say a map ν : R → Γ is a
super-multiplicative valuation if ν is:

Unital: ν(0R) = 0Γ, ν(1R) = 1Γ = ν(−1R)
Supermultiplicative: ν(a ∗R b) ≥ ν(a) ∗Γ ν(b)
Superadditive: ν(a+R b) ≥ ν(a) +Γ ν(b) = infΓ(ν(a), ν(b))
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Representations in Ultrametric Spaces

We can form a similar initial super-multiplicative valuation semiring Γ̂R , and we can
show that our structure theorem holds:

Theorem

Let (ai )i∈I and (bj)j∈J be finite collections of elements in a ring R . In Γ̂R we have:[∑
i∈I

xai

]
=

∑
j∈J

xbj


If and only if SpanZ(ai ) = SpanZ(bj)
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Representations in Ultrametric Spaces

Theorem
Let V be an n-dimensional ultrametric space and let ϕ : R → End(V ) be a
representation.
ϕ induces a super-multiplicative valuation: R → Mn(T)
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Representations in Ultrametric Spaces

Theorem
Let V be an n-dimensional ultrametric space and let ϕ : R → End(V ) be a
representation.
ϕ induces a super-multiplicative valuation: R → Mn(T)

Corollary
If R has a nontrivial n dimensional representation then there is a nontrivial map in:

Hom(Γ̂R ,Mn(T))
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Thank you for attending!

In summary:
We can generalize the notion of a valuation to non-commutative settings.
We can form an initial object which can be used to classify different structures
(non-archimedean absolute values, ultrametric representations, and more)
We can explicitly describe the additive structure of this object.
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Non-Archimedean Case of Ostrowski’s Theorem Representations in Ultrametric Spaces

Thank you for attending!

Questions?
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